RETURN TO THE LOST WORLD,
MOUNT RORAIMA (GUYANA)

By S.R. Gradstein

MOUNT RORAIMA (2,750 m) (Fig.1) is the highest and best known of a group of sandstone table mountains, belonging to the Guayan Highlands, in the south-eastern corner of Venezuela, and is located at the intersection of the boundary lines between Venezuela, Guyana and Brazil (Fig.2). The major part of the mountain lies in Venezuela and only a small portion of the plateau, the northern 1/4, belongs to Guyana. The summit is almost completely encircled by sheer cliffs, each 400-500 m. high. Leaping down the cliffs are several cascades and falls, which give rise to streams flowing to the Atlantic Ocean via the Amazon, the Essequibo and the Orinoco rivers. In Amerindian language, “Roraima” means “Mother of rivers”. The seeming inaccessibility of the summit of Mount Roraima, noted by Robert Schomburck and other 19th century explorers, gave way to the belief that prehistoric forms of life persisted on the plateau and inspired Arthur Conan Doyle to write the novel “The Lost World”. Since 1884, when Edward B. Hove and Harry J. Perkins discovered the ascent route to the summit and made the first collections on the plateau, numerous expeditions have been made to Mount Roraima and its flora has become comparatively well known. Important papers are those by Im Thurn and Oliver (1887) on Im Thurn’s collections, by Brown et al. (1901) on McConnell and Quelch’s collections and, more recently, by Steyermark (1966, 1979) on the results of his trips to Roraima and other table mountains. A colour picture-book on Roraima appeared recently in Venezuela (Brewer-Carias, 1984).

The summit flora has been found to harbour a rather high percentage of flowering plant taxa (species as well as genera), endemic to the Guayan Highlands. But contrary to earlier beliefs, these taxa are usually not restricted to the summit plateaux, but are found also on the slopes, or at surrounding, lower altitudes (Steyermark, 1981). Steyermark (1981) has recently pointed out that all collections from the summit of Mount Roraima, including those labelled “British Guiana” (e.g. the McConnell and Quelch collections), are from Venezuelan territory.

Early access to the summit (the “classical route”, see Fig. 2.) was from the South. Here the cliffs are at their lowest and meet with the upland savanna of Venezuela at about 1,400 m. At the north side, in Guyana, the mountain is surrounded by dense primary rain forest, which was not traversed by botanists until 1971. The route to the mountain from the north, the “Waruma trail” (Fig. 2), is described in detail by Warren (1973). It was this route that our expedition took in 1985.

Fig. 1. View of the summit of Mount Roraima (north side) from the ridge

Fig. 2. The route to Mount Roraima

[continued on page 2]
A brief account of the topography and the climatological conditions of the area along this route is given by Holtum and Edwards (1983). The north side of the area is relatively wet as winds in the area are prevailing north-easterly, blowing moisture-laden ocean air from the Gulf of Guinea coast to Mount Roraima. At the village of Pilipai (500 m) in a flat river drainage area approximately 45 km east of Mount Roraima, annual rainfall amounts to 2,800–3,600 mm and it may be assumed that the northern slopes of the mountain receive considerably more precipitation. During most of the year, the upper slopes of Mount Roraima are enveloped in clouds. As a result, a "moosy" forest vegetation is found on the slopes at this side of the mountain. Up to 1985, several British expeditions had explored the vascular flora of this side of the mountain, but the bryophytes and lichens of the area remained virtually unknown.

The chronology of the botanical exploration of the northern Guyana side of Mount Roraima (Guyana) will be found in the second newsletter of the "Flora of the Guianas" project, (Jansen-Jacobs et al. 1986).

Itinerary
Our expedition had as its objectives to explore the Guyana side of Mount Roraima (Upper Maracatu District) and to pay special attention to the bryophytes and lichens of the area.

In the field from 3 February to 3 March, 1985. Our trip formed part of a major international botanical expedition to Guyana in the framework of the "Flora of the Guianas" project (Jansen-Jacobs et al., 1986). André Aptroot, Utrecht (lichens), S. Rob Gradstein, Utrecht (bryophytes, expedition leader). Jani Renz, Basel (lichens) and Harrie J. Sipman, Berlin (lichens) were the members of our party.

On 3 February we flew to Kamarang, the administrative centre of the upper Maracatu District, where we took a room in the local guesthouse. The skies were clear, we could catch an occasional glimpse of Mount Roraima in the far distance, about 80 km, further south. After a day of negotiations with local leaders and flying around the village, we departed by boat to the Amerindian village of Jawa Jawa, 3 hours up the Maracatu river, to meet Mr. Isaac Jerry who had been recommended to us as foreman for the trip to Roraima. We were fortunate to find Mr. Jerry at home and willing to guide us to the mountain.

On 7 February we left Jawa Jawa - where we did some good collecting in the densely-forested surroundings of the village - with Mr. Jerry and his partner, 2 boats and provisions for 2 weeks. The next evening we reached camp 1 on the Warapai trail at the ultimate point of navigation of the Waruma river, about 30 km from the mountain (Fig. 2). Due to dry-season weather the water level in the rivers was rather low and had become even lower on one of the rapids in the Waruma river between the mouth of the river and camp to camp in the difficult to pass. Moreover, several logs were blocking the river. At times everybody had to leave the boats and help push them over the shallow waters towards deeper water. We were greatly impressed by the ease and speed with which the Amerindians got the boats over these obstacles. Meanwhile, we also had the opportunity to collect some interesting bryophytes in the rapids, including Schusterolejeuna inodata.

After landing, we decided to proceed to the mountain as soon as possible and made a base camp at the foot of the mountain, at the site of old Camp 5 (750 m). Isaac Jerry went ahead with two Amerindians to open up the trail, which had become seriously overgrown and blocked by fallen logs. It took us 4 days to reach the foot of the mountain, marching from Camp 5 in the morning and collecting in the afternoon. Fortunately the riverine forest between camps 1 and 4, which had been visited during the previous expeditions and difficult to pass, was dry and caused us no special problems. At Camp 5 the party was split up. Jani Renz remained there to collect in the submontane rain forest and to take care of the drying of the collections, while the others climbed up to Camp 6 (1,400 m). Three days were spent at Camp 6, from where André Aptroot and Rob Gradstein explored the montane rain forests on the north ridge of Mount Roraima (2,000–2,300 m). Harry Sipman collected in the mossy forest around Camp 5. Although it rained heavily during the nights, we had mostly dry weather and even some sunshine during the day and could make very good collections on the slopes of the mountain. From "El Dorado swamp" on the north ridge, described in detail by previous explorers (Warren 1973, Maclnnes 1976), we had breathtaking views of the cliffs of Roraima and surrounding table mountains.

On 18 February all expedition members were back in Camp 5 and due to a shortage of food, it was decided to return to Camp 1 as soon as possible. The next two days we marched back through the forest and on 21 February arrived safely with our collections in Kamarang, where we left farewell to our Amerindian companions. In total we had collected 1,080 herbarium sheets including 90 species in bryophytes and 300 lichens. In addition, several hundreds of specimens were collected around Jawa Jawa including Mount Lapi and Mount Pripwipiputu. The collections are kept in U (general) and (lichens) and in the herbarium of J. Renz, Basel (orchids).

Notes on the vegetation belts of Mount Roraima (Fig. 3):

I. Riverine rain forest (550 m)
This consists of a fairly dense forest of trees with relatively thin trunks, rising to a height of 20–30 meters. There is a well-developed understory but the ground is densely covered by sclerophyllous and generally devoid of plants. Epiphytes are rather common, especially where the tree cover is lessened and the forest more open. The bryophytes form thin mats 1–4 cm thick on the trunks, in which Plagiochila (2–3 spp./m). Microhypnum and Psilotum verrucosum. The most important lichen groups include Hypogloea, Coccocarpia and Philopora.

II. The submontane rain forest (1500–2200 m)
The gently-rising, lower slopes of the mountain are covered by a submontane rain forest very different in aspect and species composition from the riverine forest, characterized by the increased "moosiness" of the forest. The bryophyte cover does not become so prominent as in the montane forest, however, and mats covering the trunks are less than 5 cm in thickness. With increasing altitude lichens become more common, while mosses become sparser. From Camp 3 upwards a peculiar, robust liverwort was common on fallen trunks which, according to Dr. Groff of Jena, is an undescribed species of a new genus of the family Lepidiozae.

III. The montane forest (1200–1600 m)
The montane forest occurs on the steeper slopes, from 1200 m upwards to the base of the cliffs. The ground is very rocky and uneven, and the tree layer is slightly lower than in
Leioscyphus repens Mitt.: a lost taxon from New Zealand?

By G.G. Hæssel de Menéndez

MITTEN DESCRIBED (1855: 134) only one species from New Zealand, Northern Is., Bay of Islands (recollect over Leptocodium linden-bergii, J.D.H.), when he established the new genus Leioscyphus Mitt. On one important character, the terminal laterally compressed periphyses on one plant and 2 subfossil innovations under one of them. In the illustration one can see also the bifid amphigastria with lateral basal teeth and the bidentate leaves. At the end of the generic description, between brackets, is "Leioscyphus Mitt. 1851" (= delicate cup) included, suggesting the rejection of the earlier name. Using our present Code (Voss, 1968, 1983) this taxon would fall into art. 63.1, and therefore Leioscyphus would be a synonym of Leptocodium Mitc. Mitt. The synonym could be used by Grolle (1983: 22) to discard with elegance the name Leioscyphus Mitt.

Later, Mitten (1860: 225) placed 5 species and Hooker (1860: 207) 3 species, apart from L. repens, in the genus Leioscyphus. Between 1905 and 1922, Stephani (1905) included as many as 61 species in the same genus, which have now found their way, for various nomenclatural reasons, into Chiono-scyphus, Classoscyphus, Leioscyphus, Podophyllopsis, Pseudostolonophora, Notho-scyphus, and Priandrophylum, as more details on them were obtained.

Hodgson (1943: 44) considered L. repens a synonym of Chioscyphus phyllanthus (Hook. f. et T. M.) Mitt. and Grolle (1960: 69) confirmed her statement. In spite of this affirmation, I was induced to believe that neither of them had seen the right plant, i.e. the type specimen of L. repens, because both the description and the illustration are sufficiently clear to obviate doubts and further our discussion about the features of the plant and its identity.

If Hodgson’s and Grolle’s statements are correct, Hænnk’s (1972) Index would also be correct in the sense that no hepatic with lateral compressed perithall, bearing well-developed amphigastria, exists in New Zealand.

(Continued on page 4.)
The Bryological Times

4.

LEIOSCYPHUS REPENS Mitt.: a lost taxon from New Zealand. [contd. from page 31.]

From Mitten, W., 1855.

- there is no Leioscyphus or Leioscyphus cited in bold type - and Mitten imagined the plant.

Hamil (1972: 145) cited in the additions to his Index in italic type, Leioscyphus australis (Tayl.) Schust., a plant with rounded entire leaves and with compressed terminal two-winged perianthia, originally found on Campbell Island by Taylor, 1844: 383, and as J uncera australis Hook. f. at Taylor's L. species, which Schuster (1963: 270) claims to have found in New Zealand, was also once referred to Chiloscyphus (Gotssche, Lindenberg and Nee ab Eisenbeck, 1845: 189) and is, in Hamlin's list (1972: 255) also in italic type, mentioned as such. It differs apparently by its leaves and the winged perianth from L. repens, Pseudodaphnocala denticulata Schust. et Engel (1982: 71, fig. 2-3), bears a laterally compressed perianthia, but also seems not to refer to L. repens.

In order to find out about the type material of L. repens, I got on loan from BM, the specimen listed by Thiers (1933: 282) as the holotype. Unfortunately, as illustrated here in Fig. 2, the specimen had quadridif amphigastria, is sterile and is unrelated to L. repens. The specimen from NY, "New Zealand, leg. Lyall, holotypus of L. repens" apparently seen by

Grolle (1982: 69) cannot be found in the herbarium (pers. comm. B.M., Thiers). Dr. E. Campbell saw a specimen from WELT, labelled L. repens, but it was only a small scrap with no perianth (pers. comm.).

Grolle (1982: 69) cannot be found in the herbarium (pers. comm. B.M., Thiers). Dr. E. Campbell saw a specimen from WELT, labelled L. repens, but it was only a small scrap with no perianth (pers. comm.).

Fig. 1. Leioscyphus repens Mitten. Plate XVIII, Fig. 1.

Fig. 2. Leioscyphus repens Mitten, New Zealand, J.D. Hooker, creeping over Lepidonia lindenbergii. BM.

Does a plant like Mitten's illustration exist, or not? It is permissible to wipe off Leioscyphus as genus, and L. repens as a species, from the New Zealand hepatic flora? My questions are directed primarily to those hepatocologists who work and have been collecting in New Zealand.

My best thanks to Mr. J. Cannon (BM) and Dr. B. Thiers (NY) for their information and search for the specimen related to this question, as well as to Dr. E. Campbell (MF) who took an interest in the same subject.

References

No. 40, 1986.

Desiderata

DALE H. VITT is currently revising Nacromitrium and Schlotheimia in New Guinea. He requests collections of these genera from this area, and he will be happy to name any material.

Please send specimens to him at the University of Alberta, Department of Botany, Edmonton, Alberta, Canada T6G 2E9.
XIV International Botanical Congress, Berlin (West), Germany, 24th July to 1st August, 1987.

The following arrangements, for bryological contributions to the Congress, have been announced:

Division 5: Systematic and Evolutionary Botany

(a) **In tropical rain forests**

Počs, T. Changes in the biomass and productivity of bryophytes in East African rain forests.

Richards, P. W. Tropical forest bryophytes: synusiae and strategies.

Schuster, R. M. Reproductive biology and ecology of tropical Hepaticae and their relation to their distribution.

Thiers, B. Morphological adaptations of bryophytes to the tropical rain forest habitat.

Vitt, D. H. Structural adaptation of mosses to rain forest habitats.

Zanten, B. O. van. The resistance of spores of tropical bryophytes and heath species to desiccation, freezing and UV radiation, in relation to their distribution.

Geissler, P. Ecological adaptation and phytogeography—problems of speciation in the Lecanocaulaceae of Marschallia.

(b) **In arid environments**

Longton, R. E. Reproductive strategies of bryophytes in arid environments.

Scott, G. A. W. Morphological strategies in bryophytes of arid environments.

Bischnier, H. Relationships in the Marchantiales.

Buck, W. R. Pleurocarpic families.

Crosby, M. R. Hookeriales revisited.

Murray, Barbara. Andreaeaceae and Andreaebryaceae.

Váňa, J. Family relations: structural bases in the Jungmulleriales.

Masselink & Aguirre, G. C. Proposal for a new classification within the Anthocerotopsida.

Hasegawa, J. A proposal of a new system of the Anthocerotae with a revision of the genera.

Asakawa, Y. The chemical evolution of mono- and sesquiterpenoids in bryophytes.

Connolly, J. D. Higher terpenoids and steroids and their meaning in the evolution of bryophytes.

Ernsmeier, H. D. The chemotaxonomy of phenolic compounds in bryophytes.

Dzirykowskii, I. Phylogeny of the Conocephalum conicum species group based on macromolecular data.

Hofman, A. Intra- and interspecific alkaloid variation in the moss genus Plagiothecium, in relation to breeding system and ploidy level.

Chia-Li Wu. Special features of the chemical constituents of Taiwanese liverworts.

Shu-Jen Chang. Chemical constituents of Taiwanese liverworts.

(a) **Cytotaxonomy**

Chopra, R. N. In vitro production, apomixy and apomony in bryophytes and their significance.

Ramsay, H. P. Cytological and biosystematic studies on some Australasian mosses.

Masubuchi, M. B chromosomes in Anagrus marinus (Hepaticae).

(b) **Ultrastructure**

Lemmon, B. E. Ultrastructural details of sporogenesis in mosses, liverworts and hornworts, and their phylogenetic implications.

Ligone, R. Ultrastructure of the gemmophyte/sporophyte junction and its relationship to bryophyte evolution.

Crandall-Stotler, B. Fine structure of the meristic cells of Takakia lpidocozoides.

Excursion Programme

Although the full programme is not yet available, it is known that Excursion No. 06 to central and southern Germany (FRG) has been cancelled.

Other arrangements

No further information is available beyond what was given in the Second Announcement published in Bryol. Times, 37:8, May, 1986, which should be consulted. When the Third Circular becomes available, further details will be announced in these columns.

Membership of IAB

The following lists for the period 1 July to 31 August, 1986, up-date those already published. The last list appeared in Bryol. Times, 39:7

New Members

Lewis, Marco‡; Bartholomew, Sharon E.‡; Kelly, M. G.‡; Whittemore, Alan‡.

Addresses

Lewis, Marco, Herbario Nacional de Bolivia, Casilla 20127, La Paz, Bolivia.

Bartholomew, Sharon E. Department of Botany, Southern Illinois University, Carbondale Ill. 62901, U.S.A.

Kelly, M. G. Department of Botany, University of Durham, Durham DH1 3LE, England, U.K.

Whittemore, Alan. Department of Botany, University of Texas, Austin, T. 78712, U.S.A.

Change of Address

Library, Australian National Botanic Gardens, P.O. Box 1777, Canberra A.C.T. 2601, Australia.

Basile, Margaret R. Department of Biological Sciences, Lehman College, CUNY, Bronx, NY 10468, U.S.A.

Cramer, J. Am Hasengarten 23A, D-3100 Braunschweig, Germany B.R.D.
EIGHTH ALL INDIA BOTANICAL
CONFERENCE, HYDERABAD,

By Jagdish Lal

IN PREVIOUS YEARS, the Bryophyta
were grouped in one Section along
with Pteridophyta, Gymnosperms
and Palaeobotany. This year the
Indian Botanical Society took spe-
cial care and created a separate
'Section V' for presentation of
papers on the Bryophyta.

In all 12 papers were pre-
sented, of which 10 dealt with
Hepaticae (Lucknow Univ.-8; Bir-
hal Sahni Institute of Palaeobo-
tany-1; National Botanical Re-
search Institute-1) while the
other two (Kumaon Univ. Nainital-
1; Botanical Survey of India,
Itanagar-1) included mosses also.

The following is the list of
papers presented:

1. Aasthana, A.K. A study of
Anthoceros crisipulus (Mont.) Don-
in with SEM details of spores.
2. Srivastava, S.C. & Deepak
Sharma. Calypogia fissa (L.) Rad. - A rare marsupial liver-
wort from eastern Himalayas.
3. Shabeen, F. Porela densifo-
ia (St.) Hatt. in India.
4. Singh, Panzy. A study of
Jungermannia (Solenostoma) subrubra
Steppel endemic to eastern Hima-
layas.
5. Awasthi, U.S. The genus Le-
ptolejeuna (Spruce) St. in In-
dia.
6. Srivastava, S.C. & A. Sriv-
astava. A new heterophycous
Schiffin. from eastern Himalayas.
7. Agrawal, R. The genus Mic-
rolejeuna (Spr.) Jack & St. in
India.
8. Srivastava, G. Coleolejeuna
 режоле. и ошемтодес (Steph.) Benedix in India.
9. Gupta, Asha. A new species of
Riccia (Mich.) L. from Luck-
now district, Uttar Pradesh.
10. Nath, V. Genus Frullania
Radcli from Pindar Glacier Valley.
Bryophytes associated with iron
limonite-bearing acidic substrates
in Khasi Himalaya.
12. Lal, J. Epiphyllous bryo-
phytes of Itanagar and its vic-
inity.

Botanical Survey of India,
Arunchal Pradesh Circle, Itan-
agar-791 111. (Arunchal Pradesh) India.

[Note Dr. Lal's new address.
He was formerly at Allahabad. Ed.]
Impressions of the Fifth Meeting of CEBWG

By Manfred Siegel

The Fifth Meeting of the Central and East European Bryological Working Group (CEBWG) was held in Leipzig under the joint sponsorship of the Academy of Sciences of the GDR and the University of Leipzig, 25-29 August, 1986.

Our programme started on Tuesday 26th with 36 participants from 8 countries. The morning session was opened by G. Möller, Leipzig, who spoke about the bryology of Leipzig. The University of Leipzig, founded in 1409, has a long history in botany, having the first permanent botanical garden existing in Central Europe. The famous and founder of bryology, who worked there from 1786 to 1799. After his death, the bryology of Leipzig with its membership and the bryological journal, was published in 1801. He explained the mechanism of mosses, the germination of spores, and the development of the moss plant. The metabolism was discovered 80 years later by Hofmeister (born in Leipzig). The well-known German poet J. W. von Goethe visited Johannes Hedwig and was very pleased with his drawings and microscopic slides.

Later, Christian Friedrich Schwägrichen worked in Leipzig, well-known among bryologists for his work on Hepaticae and the moss treating for the fourth edition of Linnaeus’ Species plantarum. The third famous bryologist from Leipzig who was mentioned was Wilhelm Moenkemeyer. He worked from 1890 to 1920 as an Inspector of the botanical garden and published in 1927 his standard work Die Laubmoose Europas, which was in fact a supplement of the much earlier work by Lipricht in Rabenhorst’s Cryptogamenflora.

R. Grolle, Jena, then read a paper about the bryological landscape of the GDR, illustrated with a poster. Former bryologists who had resided in the area were mentioned on a map with details of the dates showing the duration of their stay at the various sites. Three main centres of bryology in the area were mentioned: Leipzig, Berlin, and Jena. Jena was favoured by Th. Herzog and his scholars, while Schreber, Stephani and Geibel all worked in Leipzig. The names of other famous bryologists, who worked in Leipzig, were mentioned, such as Bridel (Gotha), C. Möller, (Halle), Goebe (Geisa), R. Hampe (Blankenburg Harz), Rabenhorst (Dresden), Horneck (Greifswald), and many more. Leipzig, being the earliest main centre of bryology, was certainly a very right choice of venue for this meeting.

Dr. Grolle finished his statement with a thriller! It appears that in the dark ages before civilization, bryology began about 4,000 years ago, some of the Bronze Age spread marts of *Hypnodemogloeus trinervis* on the floors of deep caves in the Kyffhäuser Mountains. (marked by a death-head on Dr. Grolle’s poster) for their comfort during rites of cannibalism.

Other papers in this session were as follows:

J. SWYEKOWSKY, Poznań: Problem of shape characteristics and comparison of the groups. An example of *Bazzania reniformis*, *Bazzania obtusa*, and *Bazzania angustata*. Some objections of the Linnaean system. The reproductive parts of the moss genus *Bazzania*.

R. SCHOLAN, Paris, France: Burckhordia stricta (Hedw.) Schimp. and *E. angustifolia* (Bory) T. Kop. in aspects of biometrical analysis.

O. SCHMIDT, Frankfurt: The bryological flora of the Kyffhäuser Mountains and the Koenigstein, Thuringia, centre of *Bazzania reniformis*.

M. KREZAKA, Poznań: Enzyme variability of haploid and diploid plants in relation to intraspecific and interspecific differentiation.

A. KANITZ, Dresden: *Bazzania reniformis* with preserved oil bodies from Dominican amber. Everyone knows that oil bodies will disappear on the death of cells in a few weeks or months. Sometimes they are to be found later. It is a miracle of nature that such oil bodies, which are about 20 million years old, should be preserved. The liverwort described by R. Grolle as *Bazzania reniformis*, which has 3 to 6 oil bodies in every cell, was demonstrated with the aid of a slide.

S. SOKOLOV, Belgrade: Studies on African Calypogynaceae. VI.

D. BÖNKERT, Bonn: Appearance of parasitic fungi of the *Pyrenaceae* (Pezizales) on some moss genera. The bryophyllic cup fungi of the genera *Octosporea*, *Lamprosperma*, *Neottia*, and *Ootosporea* are found mainly on acrocarpous mosses - rarely on pleurocarpous mosses or hepatics. The following genera are frequently attacked by bryophyllic cup fungi: *Syntrichium, Coratodon*, *Funaria*, *Ceratodon*, *Pseudodichotomospora, Barbulis, and other Potoniella, Recurritina, Schistochete, Moiaceae*, and others are free from such fungi. The lecturers urged the participants to collect such bryophyllic fungi during their field work. The apothecia of these fungi are 0.5 - 4 (12) mm in diameter, and due to cartenoid f orange colouring. It is recommended to collect and to dry such fungi together with mosses and to send them to the lecturers. Birologists could also help the participants in the determination of host-mosses.

R. FRITZSCH, Gatersleben: Chromosomes of some Caucasian liverworts. One liverwort is 0.5 - 4 (12) mm in diameter, and due to cartenoid f orange colouring. It is recommended to collect and to dry such fungi together with mosses and to send them to the lecturers. Birologists could also help the participants in the determination of host-mosses.

S. HUNCK, Halle: News about the chemistry of liverworts.

After the afternoon session we had a sightseeing tour in the centre of Leipzig under the leadership of G. Möller. In the evening the "Biologische Gesellschaft der DDR" and the University of Leipzig invited the participants to a welcoming party in the "Haus der Wissenschaft" where we were relaxed and confirmed our talk to matters non-bryological.

Wednesday, 27th August. Papers in this session were as follows:

U. K. MAMATKULOV, Dushanbe: Phytogeographical and ecological peculiarities of middle Asian bryophytes.

N. KONSTANTINOVA, Kirov: Hepatic flora of the Lovozor Mountains, a district of the Trukh region. V. A. MANIKYAN, Jerewan: The mosses of the forests of Armenia.

R. MARSTÄLER, Düsseldorf: Distribution of the bulbiferous Polstia species in Central Europe.

G. NORDHORN-RICHTER, Düsseldorf: Distribution of the bulbiferous Polstia species in Central Europe.

S. SLOKODA, Greifswald: Problems and experience with involving mosses for ecological characterisation of biotopes.

L. MEINER, Steinach: About some GDR mosses critical for mapping.

W. BÖNSDORF, Dresden: 25 years of moss mapping in Saxony - an attempt at a critical evaluation.

At the end of the session...
EDWARD CHARLES WALLACE 1909 - 1966

By A.C. Crundwell

BY THE DEATH OF TED WALLACE on the 23rd July, 1986, British botany has lost one of its most distinguished amateurs.

Ted was born in Blackfriars, London, on 12th February, 1909, but when he was two, his parents moved to a house in Sutton, in the outer suburbs of London, and this house remained his home for the rest of his life. He was an only child and for his last twenty-five years, after the death of his mother, he lived alone.

He was educated locally at the Sutton County Grammar School. He had no family background in botany, and no parental encouragement either, but from the age of five he was interested in flowers and in plant life, and by the time he was ten he was looking at mosses. When comparing some of his own specimens with others on display at the British Museum (Natural History) he was spotted by A. Gepp, who introduced him to W.R. Sher- rin, who took him under his wing and introduced him to the world of botanists.

At school he was expected to play games and sports, but these had no appeal and he played trun- ant. He got into trouble, but firmly told his teachers that botany was more important than games, and he was eventually allowed to go his own way.

If he had been born twenty years later, he would have had more opportunity to continue his education and go to a University, but his father, successively tax-driver and printer, had no money for this, and for Ted it was out of the question. He left school at sixteen to work as a clerk in the head office of W.H. Smith & Son, book-sellers and newsagents. He remained with them for the rest of his working life, apart from a period of war service with the Royal Air Force in India and Burma.

Up to the time of his retirement in 1972, his weekends were spent in local excursions, his holidays mostly in the Highlands of Scotland in company with his great friend Robert S. Botting, a Glasgow schoolmaster who was an equally keen botanist. But when he retired he was able to spread his wings and he travelled extensively in Europe and also visited Japan, Australia, Kashmir, Florida and Alaska. During his last few years, failing health restricted his activities, but not by any means to the extent that he could help. He continued his excursions, at home and abroad, often to the apprehension of those who would have to take charge if he were ill; but he was determined to wear out, not to rust out. A doctor told him a few months before the end that he was unfit to look after himself and that he should go into a home for the aged. But for Ted that would have been a living death, and with the help of a kindly neighbour he carried on, and his last excursion was only ten days before he died.

Ted was an accomplished field naturalist with a first-rate knowledge of vascular plants and bryophytes, and considerable expertise with lichens and butterflies. His additions to the British bryophyte flora included Tortula inflata, Funaria crucioides, Hygrohypnum polare and Barbula mamillosa. He was also an enthusiastic collector. His bryophyte herbarium, which he bequeathed to the National Museum of Wales, Cardiff, is probably as big as that of any other British botanist, past or present.
Personalia

Noris Salazar Allen successfully defended her Ph.D. thesis entitled "A revision of the Pan-tropical moss genus Leucobrya (Bryopteris, Leucobryaceae)." Her external examiner was Dr. H.A. Miller of Florida Technological University, Orlando. She has accepted a position at the University of Panama, Panama City, Panama, as of July 1986. In addition to her teaching duties in the Department of Biology, she will begin working on a Moss Flora of Panama.

William A. Weber received the Robert L. Stearns award presented by the University of Colorado Alumni Association on 22nd May 1986.
The Bryological Times

No. 40, 1986.

BRYOLOGICAL ARRANGEMENTS

AT URECHT 1986-1987

S. ROB GRADSTEIN, Utrecht, has been appointed visiting professor at the University of Michigan during the academic year 1986-87. From August 20, 1986 until June 1, 1987 his address will be: Professor of Botany, The University of Michigan, Ann Arbor, Michigan 48109 - 1048, U.S.A., Tel.: 764-8538 (Howard Crum's Office).

During his leave from Utrecht, Guido van Bremen will be acting curator of the cryptogamic herbarium of the University of Utrecht, and dealing with all correspondence concerning loans, etc.

Correspondence about IAB membership and payments may, as usual, be sent to Utrecht, where Mr. Niko de Kwaadsteniet (IAPT-Bureau) continues to deal with IAB administration during Dr. Gradstein's absence.

BRYOLOGICAL ACTIVITIES AT UNAF

STEVE L. TINNIE has accepted a position as Assistant professor of Botany in the Department of Biology, University of North Alabama. In addition to teaching, he will continue work on neotropical bryophytes and bryophytes of south-eastern U.S.A. He will also be curating and developing the herbarium (UNAF) bryophyte collection. Currently, the collection contains approximately 1,000 bryophyte species (most are from his collections).

Dr. Tinnie would like to begin an exchange program with other herbaria, especially of neotropical hepatics. Any suggestions or advice is welcomed, and should be sent to him at: Department of biology, F.O. Box 5264, Univ. of North Alabama, Florence, AL 35632-0001, U.S.A.

THE CENTRAL AND EAST EUROPEAN Bryological Working Group is planning to hold its 6th biennial meeting in 1988. It will be held in the Baroque Castle L rifle (which will provide accommodation, as well as lecture facilities), situated near the town of Mělník, ca. 40 km to the north of Prague.

The meeting will last for 4 or 5 days, from 12th September, and will probably have two days of lectures, together with two day-long excursions. One of the excursions will be to an area of cretaceous sandstone outcrops in North Bohemia.

Further information will be made available, when it is ready. by:

T. Herben, Botanical Institute, Czechoslovak Academy of Sciences, C 25243 Prírozen, Mr. Praha, Czechoslovakia.

DIARY

For explanation of acronyms, see Bryol. Times, 31: 7-8, 1985.

Nov. 1-2. BBS. Taxonomic Workshop, University of Reading. Local Sec.: Dr. R.E. Longton, Dept. of Botany, The University, Reading RG6 2AS, Berkshire, England. For details, see Bull. BBS, 48: 13.

Nov. 7. VMGB. Field trip to Hoogarden-Meldert, Prov. of Brabant. Meet 09.30 hrs. at the church in Hoogarden.

1987

April 1-8. BBS. Spring Field Meeting, Penzance, Cornwall. Local Sec.: Mrs. J.A. Paton, Fair Rising, Wagg Lane, Probus, Truro, Cornwall TR2 4UJ. For details see Bull. BBS, 47.

1988

Sept. 12th. CEBWG Meeting, Ljubljana (Village near Mělník), Czecho slovakia. For further details, see above.

THE INTERNATIONAL ASSOCIATION OF BRYOLOGISTS publishes The Bryological Times every two months, the Bulletin of Bryology twice a year and the Advances in Bryology every two years. Material for the Bryological Times can be sent at any time, but submission dates for the Bulletin and the Advances should be discussed with the Editors, Dr. Diana G. Norton (University of Iowa) U.S.A. and Dr. Norton G. Miller (Albany) U.S.A. respectively. The Editors do not accept responsibility for the views of authors.

For details regarding members of the International Association of Bryologists (currently U.S. $ 0.00 p.p.a.) write to the Honorary Secretary, Dr. S.M. Gradstein, Institut voor Systematische Plantkunde, Heidelbergerlaan 2, 3504 CS Utrecht, The Netherlands.

THE BRYOLOGICAL TIMES is published in Utrecht and distributed from Beijing (China), Eger (Hungary), Kingston (Tasmania), Missouri (U.S.A.), Reading (U.K.), Tokyo (Japan) and Utrecht. All correspondence concerning mailing to: Rob Kruijt, Instituut voor Systematische Plantkunde, Heidelbergerlaan 2, 3504 CS Utrecht, The Netherlands.

ITEMS FOR THE NEXT ISSUE to be with the Editor, Dr. S.M. Greene, Department of Botany, The University of Reading, London Road, Reading RG1 5AQ, Berkshire, England (Telex 647613 RULIB) by the 1st of December at the latest. Items for the regular columns should be sent direct to the column editors, whose names and addresses will be found in Bryol. Times, 31:9, 1985.

Copyright © International Association of Bryologists